인공지능 개발자 수다(유튜브 바로가기) 자세히보기
반응형

데이터분석 2

[시계열] ARMA 모델 (Autoregressive Moving Average)

0. 이전 글 소개 AR모델 설명 [시계열] AR 모델(Autoregressive, 자기회귀) 1. 소개 (Autoregressive) - 설명: 시계열 데이터를 모델링하는 데 사용되는 통계적인 방법 - 가정: AR 모델은 현재 시점의 데이터가 이전 시점의 데이터에 의존한다는 가정에 기반하여 작동 - AR(p)에서 databoom.tistory.com MA모델 설명 [시계열] MA 모델(이동평균, Moving Average) MA(이동평균, Moving Average) 1. 소개 설명 시계열 데이터를 모델링하는 데 사용되는 통계적인 방법 현재 시점의 데이터를 이전 시점의 잔차와 계수의 조합으로 예측 가정: 현재 시점의 데이터가 이 databoom.tistory.com 1. 소개 (Autoregressiv..

통계 2023.06.20

[LightGBM] 설명 및 장단점

lightGBM 1. 장점Light GBM은 말 그대로 “Light” 가벼운 것인데요, 왜냐면 속도가 빠르기 때문입니다. Light GBM은 큰 사이즈의 데이터를 다룰 수 있고 실행시킬 때 적은 메모리를 차지합니다. Light GBM이 인기있는 또 다른 이유는 바로 결과의 정확도에 초점을 맞추기 때문입니다. LGBM은 또한 GPU 학습을 지원하기 때문에 데이터 사이언티스트가 데이터 분석 어플리케이션을 개발할 때 LGBM을 폭넓게 사용하고 있습니다. 2. 권장 데이터 수LGBM을 작은 데이터 세트에 사용하는 것은 추천되지 않습니다. Light GBM은 overfitting (과적합)에 민감하고 작은 데이터에 대해서 과적합하기 쉽습니다. row (행) 수에 대한 제한은 없지만 제 경험상 10,000 이상의 ..

Machine Learning 2021.04.27
반응형