1. 소개 소개 시계열 데이터의 계절성을 처리하기 위해 만든 모델 ARIMA 모델을 확장한 모델 사용 분야 계절적 추세와 패턴이 있는 시계열 데이터 분석이 가능하므로, 비즈니스와 경제 분야에서 많이 사용함 2. 수식 2.1. AR(p) 구성 요소 $$ X_t = c + \phi_1X_{t-1} + \phi_2X_{t-2} + ... + \phi_pX_{t-p} + \varepsilon_t $$ 2.2. I(d) 구성 요소 (차분) $$ \Delta^d X_t = (1 - B)^d X_t = X_t - X_{t-d} = \varepsilon_t $$ 2.3. MA(q) 구성 요소 $$ X_t = c + \varepsilon_t + \theta_1\varepsilon_{t-1} + \theta_2\varep..