0. 개요Retriever를 사용하기 위해서는 검색 대상이 되는 벡터스토어(VectorStore)를 먼저 만들어야 한다. 벡터스토어(VectorStore)란 문서(텍스트 등)를 벡터 형태로 변환해서 저장하고, 유사도를 기반으로 빠르게 검색할 수 있게 해주는 구조이다. 일반적으로 문서를 검색할 때 키워드 매칭(예: Elasticsearch)을 많이 사용한다. 하지만 GPT와 같은 대규모 언어 모델(LLM)과 결합해 좀 더 ‘의미’ 기반의 검색, 즉 “유사한 문장을 찾는” 등의 기능을 위해서는 단어 자체가 아닌, 문장의 의미를 담고 있는 벡터(embedding)가 필요하다. 벡터스토어의 핵심 기능은 다음과 같다.삽입(Insertion): 텍스트를 받아 임베딩으로 변환한 후, 벡터 형태로 DB(혹은 인덱스)에..